
Never Been KIST: Tor’s Congestion Management Blossoms with
Kernel-Informed Socket Transport

Rob Jansen† John Geddes‡ Chris Wacek∗ Micah Sherr∗ Paul Syverson†

† U.S. Naval Research Laboratory
{rob.g.jansen, paul.syverson}@nrl.navy.mil

‡ University of Minnesota
geddes@cs.umn.edu

∗ Georgetown University
{cwacek, msherr}@cs.georgetown.edu

Abstract
Tor’s growing popularity and user diversity has re-

sulted in network performance problems that are not
well understood. A large body of work has attempted
to solve these problems without a complete understand-
ing of where congestion occurs in Tor. In this paper,
we first study congestion in Tor at individual relays as
well as along the entire end-to-end Tor path and find
that congestion occurs almost exclusively in egress ker-
nel socket buffers. We then analyze Tor’s socket interac-
tions and discover two major issues affecting congestion:
Tor writes sockets sequentially, and Tor writes as much
as possible to each socket. We thus design, implement,
and test KIST: a new socket management algorithm that
uses real-time kernel information to dynamically com-
pute the amount to write to each socket while consider-
ing all writable circuits when scheduling new cells. We
find that, in the medians, KIST reduces circuit conges-
tion by over 30 percent, reduces network latency by 18
percent, and increases network throughput by nearly 10
percent. We analyze the security of KIST and find an ac-
ceptable performance and security trade-off, as it does
not significantly affect the outcome of well-known la-
tency and throughput attacks. While our focus is Tor,
our techniques and observations should help analyze and
improve overlay and application performance, both for
security applications and in general.

1 Introduction

Tor [21] is the most popular overlay network for com-
municating anonymously online. Tor serves millions of
users daily by transferring their traffic through a source-
routed circuit of three volunteer relays, and encrypts the
traffic in such a way that no one relay learns both its
source and intended destination. Tor is also used to resist
online censorship, and its support for hidden services,
network bridges, and protocol obfuscation has helped at-
tract a large and diverse set of users.

While Tor’s growing popularity, variety of use cases,
and diversity of users have provided a larger anonymity
set, they have also led to performance issues [23]. For
example, it has been shown that roughly half of Tor’s
traffic can be attributed to BitTorrent [18, 43], while the
more recent use of Tor by a botnet [29] has further in-
creased concern about Tor’s ability to utilize volunteer
resources to handle a growing user base [20, 36, 37, 45].

Numerous proposals have been made to battle Tor’s
performance problems, some of which modify the
mechanisms used for path selection [13, 59, 60], client
throttling [14, 38, 45], circuit scheduling [57], and
flow/congestion control [15]. While some of this work
has or will be incorporated into the Tor software, none of
it has provided a comprehensive understanding of where
the most significant source of congestion occurs in a
complete Tor deployment. This lack of understanding
has led to the design of uninformed algorithms and spec-
ulative solutions. In this paper, we seek a more thor-
ough understanding of congestion in Tor and its effect on
Tor’s security. We explore an answer to the fundamental
question—“Where is Tor slow?”—and design informed
solutions that not only decrease congestion, but also im-
prove Tor’s ability to manage it as Tor continues to grow.
Congestion in Tor: We use a multifaceted approach to
exploring congestion. First, we develop a shared library
and Tor software patch for measuring congestion local to
relays running in the public Tor network, and use them
to measure congestion from three live relays under our
control. Second, we develop software patches for Tor
and the open-source Shadow simulator [7], and use them
to measure congestion along the full end-to-end path in
the largest known, at-scale, private Shadow-Tor deploy-
ment. Our Shadow patches ensure that our congestion
measurements are accurate and realistic; we show how
they significantly improve Shadow’s TCP implementa-
tion, network topology, and Tor models.1

1We have contributed our patches to the Shadow project [7] and
they have been integrated as of Shadow release 1.9.0.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number

1. REPORT DATE
AUG 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Never Been KIST: Tor’s Congestion Management Blossoms with
Kernel-Informed Socket Transport

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory ,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
23rd Usenix Security Symposium, 20-22 Aug 2014, San Diego, CA.

14. ABSTRACT
Tor???s growing popularity and user diversity has resulted in network performance problems that are not
well understood. A large body of work has attempted to solve these problems without a complete
understanding of where congestion occurs in Tor. In this paper we first study congestion in Tor at
individual relays as well as along the entire end-to-end Tor path and find that congestion occurs almost
exclusively in egress kernel socket buffers. We then analyze Tor???s socket interactions and discover two
major issues affecting congestion Tor writes sockets sequentially, and Tor writes as much as possible to
each socket. We thus design, implement and test KIST: a new socket management algorithm that uses
real-time kernel information to dynamically compute the amount to write to each socket while considering
all writable circuits when scheduling new cells. We find that, in the medians, KIST reduces circuit
congestion by over 30 percent, reduces network latency by 18 percent, and increases network throughput
by nearly 10 percent. We analyze the security of KIST and find an acceptable performance and security
trade-off, as it does not significantly affect the outcome of well-known latency and throughput attacks.
While our focus is Tor our techniques and observations should help analyze and improve overlay and
application performance, both for security applications and in general.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a REPORT
unclassified

b ABSTRACT
unclassified

c THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To the best of our knowledge, we are the first to con-
sider such a comprehensive range of congestion infor-
mation that spans from individual application instances
to full network sessions for the entire distributed system.
Our analysis indicates that congestion occurs almost
exclusively inside of the kernel egress socket buffers,
dwarfing the Tor and the kernel ingress buffer times. This
finding is consistent among all three public Tor relays we
measured, and among relays in every circuit position in
our private Shadow-Tor deployment. This result is sig-
nificant, as Tor does not currently prevent, detect, or oth-
erwise manage kernel congestion.
Mismanaged Socket Output: Using this new under-
standing of where congestion occurs, we analyze Tor’s
socket output mechanisms and find two significant and
fundamental design issues: Tor sequentially writes to
sockets while ignoring the state of all sockets other than
the one that is currently being written; and Tor writes as
much as possible to each socket.

By writing to sockets sequentially, Tor’s circuit sched-
uler considers only a small subset of the circuits with
writable data. We show how this leads to improper uti-
lization of circuit priority mechanisms, which causes Tor
to send lower priority data from one socket before higher
priority data from another. This finding confirms evi-
dence from previous work indicating the ineffectiveness
of circuit priority algorithms [35].

By writing as much as possible to each socket, Tor is
often delivering to the kernel more data than it is capable
of sending due to either physical bandwidth limitations
or throttling by the TCP congestion control protocol. Not
only does writing too much increase data queuing de-
lays in the kernel, it also further reduces the effectiveness
of Tor’s circuit priority mechanisms because Tor relin-
quishes control over the priority of data after it is deliv-
ered to the kernel.2 This kernel overload is exacerbated
by the fact that a Tor relay may have thousands of sock-
ets open at any time in order to facilitate data transfer
between other relays, a problem that may significantly
worsen if Tor adopts recent proposals [16, 26] that sug-
gest increasing the number of sockets between relays.
KIST: Kernel-Informed Socket Transport: To solve
the socket management problems outlined above, we de-
sign KIST: a Kernel-Informed Socket Transport algo-
rithm. KIST has two features that work together to sig-
nificantly improve Tor’s control over network conges-
tion. First, KIST changes Tor’s circuit level scheduler so
that it chooses from all circuits with writable data rather
than just those belonging to a single TCP socket. Second,
to complement this global scheduling approach, KIST
also dynamically manages the amount of data written to
each socket based on real-time kernel and TCP state in-

2To the best of our knowledge, the Linux kernel uses a variant of
the first-come first-serve queuing discipline among sockets.

formation. In this way, KIST attempts to minimize the
amount of data that exists in the kernel that cannot be
sent, and to maximize the amount of time that Tor has
control over data priority.

We perform in-depth experiments in our at-scale pri-
vate Shadow-Tor network, and we show how KIST can
be used to relocate congestion from the kernel into Tor,
where it can be properly managed. We also show how
KIST allows Tor to correctly utilize its circuit priority
scheduler, reducing download latency by over 660 mil-
liseconds, or 23.5 percent, for interactive traffic streams
typically generated by web browsing behaviors.

We analyze the security of KIST, showing how it af-
fects well-known latency and throughput attacks. In par-
ticular, we show the extent to which the latency improve-
ments reduce the number of round-trip time measure-
ments needed to conduct a successful latency attack [31].
We also show how KIST does not significantly affect an
adversary’s ability to collect accurate measurements re-
quired for the throughput correlation attack [44] when
compared to vanilla Tor.
Outline of Major Contributions: We outline our major
contributions as follows:
– in Section 3 we discuss improvements to the open-

source Shadow simulator that significantly enhance
its accuracy, including experiments with the largest
known private Tor network of 3,600 relays and
13,800 clients running real Tor software;

– in Section 4 we discuss a library we developed to
measure congestion in Tor, and results from the first
known end-to-end Tor circuit congestion analysis;

– in Section 5 we show how Tor’s current management
of sockets results in ineffective circuit priority, detail
the KIST design and prototype, and show how it im-
proves Tor’s ability to manage congestion through a
comprehensive and full-network evaluation; and

– in Section 6 we analyze Tor’s security with KIST by
showing how our performance improvements affect
well-known latency and throughput attacks.

2 Background and Related Work

Tor [21] is a volunteer-operated anonymity service
used by an estimated hundreds of thousands of daily
users [28]. Tor assumes an adversary who can monitor
a portion of the underlying Internet and/or operate Tor
relays. People primarily use Tor to prevent an adversary
from discovering the endpoints of their communications,
or disrupting access to information.
Tor Traffic Handling: Tor provides anonymity by form-
ing source-routed paths called circuits that consist of
(usually) three relays on an overlay network. Clients
transfer TCP-based application traffic within these cir-
cuits; encrypted application-layer headers and payloads

2

cuits over a single TCP connection, their technique offers
significant latency improvements when connections are
lossy, since already-arrived traffic can be immediately
processed. Our technique can be viewed as a form of
application-layer head-of-line countermeasure since we
move scheduling decisions from the TCP stack to within
Tor. In contrast to Nowlan et al.’s approach, we do not re-
quire any kernel-level modifications or changes to Tor’s
transport mechanism.

3 Enhanced Network Experimentation

To increase confidence in our experiments, we introduce
three significant enhancements to the Shadow Tor simu-
lator [35] and its existing models [33]: a more realistic
simulated kernel and TCP network stack, an updated In-
ternet topology model, and the largest known deployed
private Tor network. The enhancements in this section
represent a large and determined engineering effort; we
will show how Tor experimental accuracy has signifi-
cantly benefited as a result of these improvements. We
remark that our improvements to Shadow will have an
immediate impact beyond this work to the various re-
search groups around the world that use the simulator.
Shadow TCP Enhancements: After reviewing
Shadow [7], we first discovered that it was missing
many important TCP features, causing it to be less
accurate than desired. We enhanced Shadow by adding
the following: retransmission timers [52], fast retrans-
mit/recovery [12], selective acknowledgments [42], and
forward acknowledgments [41]. Second, we discovered
that Shadow was using a very primitive version of the
basic additive-increase multiplicative-decrease (AIMD)
congestion control algorithm. We implemented a much
more complete version of the CUBIC algorithm [27], the
default congestion control algorithm used in the Linux
kernel since version 2.6.19. CUBIC is an important algo-
rithm for properly adjusting the congestion window. We
will show how our implementation of these algorithms
greatly enhance Shadow’s accuracy, which is paramount
to the remainder of this paper. See Appendix A.1 [34]
for more details about our modifications.

We verify the accuracy of Shadow’s new TCP imple-
mentation to ensure that it is adequately handling packet
loss and properly growing the congestion window by
comparing its behavior to ns [51], a popular network sim-
ulator, because of the ease at which ns is able to model
packet loss rates. In our first experiment, both Shadow
and ns have two nodes connected by a 10 MiB/s link
with a 10 ms round trip time. One node then down-
loads a 100 MiB file 10 times for each tested packet loss
rate. Figure 2a shows that the average download time in
Shadow matches well with ns over varying packet loss
rates. Although not presented here, we similarly vali-

dated Shadow with our changes against a real network
link using the bandwidth and packet loss rate that was
achieved over our switch; the results did not significantly
deviate from those presented in Figure 2a.

For our second experiment, we check that the growth
of the congestion window using CUBIC is accurate.
We first transfer a 100 MiB file over a 100 Mbit/s link
between two physical Ubuntu 12.04 machines running
the 3.2.0 Linux kernel. We record the cwnd (con-
gestion window) and ssthresh (slow start threshold)
values from the getsockopt function call using the
TCP_INFO option. We then run an identical experiment
in Shadow, setting the slow start threshold to what we
observed from Linux and ensuring that packet loss hap-
pens at roughly the same rate. Figure 2b shows the value
of cwnd in both Shadow and Linux over time, and we
see almost identical growth patterns. The slight varia-
tion in the saw-tooth pattern is due to unpredictable vari-
ation in the physical link that was not reproduced by
Shadow. As a result, Shadow’s cwnd grew slightly faster
than Linux’s because Shadow was able to send one ex-
tra packet. We believe this is an artifact of our particular
physical configuration and do not believe it significantly
affects simulation accuracy in general: more importantly,
the overall saw-tooth pattern matches well.

The two experiments discussed above give us high
confidence that our TCP implementation is accurate,
both in responding to packet loss and in operation of the
CUBIC congestion control algorithm.
Shadow Topology Enhancements: To ensure that we
are causing the most realistic performance and con-
gestion effects possible during simulation, we enhance
Shadow using techniques from recent research in mod-
eling Tor topologies [39, 59], traceroute data from
CAIDA [2], and client/server data from the Tor Metrics
Portal [8] and Alexa [1]. This data-driven Internet map
is more realistic than the one Shadow provides, and in-
cludes 699,029 vertices and 1,338,590 edges. For space
reasons, we provide more details in Appendix A.2 [34].
Tor Model: Using Shadow with the improvements dis-
cussed above, we build a Tor model that reflects the real
Tor network as it existed in July 2013, using the then-
latest stable Tor version 0.2.3.25. (We use this model
for all experiments in this paper.) Using data from the
Tor Metrics Portal [8], we configure a complete, private
Tor network following Tor modeling best practices [33],
and attach every node to the closest network location in
our topology map. The resulting Tor network config-
uration includes 10 directory authorities, 3,600 relays,
13,800 clients, and 4,000 file servers—the largest known
working private experimental Tor network, and the first
to run at scale to the best of our knowledge.

The 13,800 clients in our model provide background
traffic and load on the network. 10,800 of our clients

4

to focus on the socket contention that will occur at the
middle relay, and the four cases that result when con-
sidering whether or not the two circuits share incoming
or outgoing TCP connections at the middle relay. Clients
downloaded data through the circuits continuously for 10
minutes in Shadow and 60 minutes on DETER.6

The results collected during each of the scenarios are
shown in Figure 5. Plotted is the cumulative distribu-
tion of the throughput achieved by the better (“pri+”) and
worse (“pri-”) priority clients using the priority sched-
uler, as well as the combined cumulative distribution for
both clients using Tor’s default round-robin scheduler
(“rr”). As shown in Figure 5b, performance differenti-
ation occurs correctly with the priority scheduler on a
shared socket. However, as shown in Figure 5c, the pri-
ority scheduler is unable to differentiate throughput when
the circuits do not share a socket.
Discussion: As outlined above, the reason for no differ-
entiation in the case of the unshared socket is that both
circuits are treated independently by the scheduler due to
the sequential libevent notifications and the fact that Tor
currently schedules circuits belonging to one socket at a
time while ignoring the others. We used TorPS [10], a
Tor path selection simulator, to determine how often we
would expect unshared sockets to occur in practice. We
used TorPS to build 10 million paths following Tor’s path
selection algorithm, and computed the probability of two
circuit paths belonging to each scenario. We found that
any two paths may be classified as unshared (they share
at least one relay but never share an outgoing socket) at
least 99.775 percent of the time, clearly indicating that
adjusting Tor’s socket management may have a dramatic
effect on data priority inside of Tor.

Note that the socket mismanagement problem is not
solved simply by parallelizing the libevent notification
system and priority scheduling processes (which would
require complex code), or by utilizing classful queuing
disciplines in the kernel (which would require root priv-
ileges); while these may improve control over traffic pri-
ority to some extent, they would still result in bloated
buffers containing data that cannot be sent due to closed
TCP congestion windows.

5.2 The KIST Algorithm
In order to overcome the inefficiencies resulting from
Tor’s socket management, KIST chooses between all cir-
cuits that have queued data irrespective of the socket to
which the circuit belongs, and dynamically adjusts the
amount written to each socket based on real-time kernel
information. We now detail each of these approaches.

6The small-scale experiments described here are meant to isolate
Tor’s internal queuing behavior for analysis purposes, and do not fully
represent the live Tor network, its background traffic, or its load.

Algorithm 1 The KIST NotifySocketWritable()
callback, invoked by libevent for each writable socket.
Require: sdesc,conn,T ← GlobalWriteTimeout

1: Lp← getPendingConnectionList()
2: if Lp is Null then
3: Lp← newList()
4: setPendingConnectionList(Lp)
5: createCallback(T ,NotifyGlobalWrite())
6: end if
7: if Lp.contains(conn) is False then
8: Lp.add(conn)
9: end if

10: disableNoti f y(sdesc)

Global Circuit Scheduling: Recall that libevent delivers
write notification events for a single socket at a time. Our
approach with KIST is relatively straightforward: rather
than handle the kernel write task immediately when
libevent notifies Tor that a socket is writable, we simply
collect a set of sockets that are writable over a time inter-
val specified by an adjustable GlobalWriteTimeout
parameter. This allows us to increase the number of can-
didate circuits we consider when scheduling and writ-
ing cells to the kernel: we may select among all circuits
which contain cells that are waiting to be written to one
of the sockets in our writable set.

The socket collection approach is outlined in Algo-
rithm 1. The socket descriptor sdesc and a connection
state object conn are supplied by libevent. Note that
we disable notification events for the socket (as shown in
line 10) in order to prevent duplicate notification events
during the socket collection interval.

After the GlobalWriteTimeout time interval,
KIST begins writing cells to the sockets according to the
circuit scheduling policy. There are two major phases
to this process, which is outlined in Algorithm 2. In
lines 4 and 8, we distinguish sockets that contain raw
bytes ready to be written directly to the kernel (previ-
ously scheduled cells with TLS headers attached) from
those with additional cells ready to be converted to raw
bytes. KIST first writes the already scheduled raw bytes
(lines 4-7), and then schedules and writes additional cells
after converting them to raw bytes and adding TLS head-
ers (lines 13-15). Note that the connections should be
enumerated (on line 3 of Algorithm 2) in an order that
respects the order in which cells were converted to raw
bytes by the circuit scheduler in the previous round.

The global scheduling approach does not by itself
solve the bloated socket buffer problem. KIST also dy-
namically computes socket write limits on line 2 of Al-
gorithm 2 using real-time TCP, socket, and bandwidth in-
formation, which it then uses when deciding how much
to write to the kernel.

9

Algorithm 2 The KIST NotifyGlobalWrite() call-
back, invoked after the GlobalWriteTimeout period.

1: Leligible← newList()
2: K← collectKernelIn f o(getConnectionList())
3: for all conn in getPendingConnectionList() do
4: if hasBytesForKernel(conn) is True then
5: enableNoti f y(conn)
6: nBytes← writeBytesToKernel(K,conn)
7: end if
8: if hasCells(conn) is True and

getLimit(K,conn)> 0 then
9: Leligible.add(conn)

10: end if
11: end for
12: while Leligible.isEmpty() is False do
13: conn← scheduleCell(Leligible) {cell to bytes}
14: enableNoti f y(conn)
15: nBytes← writeBytesToKernel(K,conn)
16: if nBytes is 0 or getLimit(K,conn) is 0 then
17: Leligible.remove(conn)
18: end if
19: end while

Managing Socket Output: KIST attempts to move the
queuing delays from the kernel outbound queue to Tor’s
circuit queue by keeping kernel output buffers as small
as possible, i.e., by only writing to the kernel as much
as the kernel will actually send. By delaying the circuit
scheduling decision until the last possible instant before
kernel starvation occurs, Tor will ultimately improve its
control over the priority of outgoing data. This approach
attempts to give Tor approximately the same control over
outbound data that it would have if it had direct access to
the network interface. When combined with global cir-
cuit scheduling, Tor’s influence over outgoing data prior-
ity should improve.

To compute write limits, KIST first makes three sys-
tem calls for each connection: getsockopt on level
SOL SOCKET for option SO SNDBUF to get sndbufcap,
the capacity of the send buffer; ioctl with command
SIOCOUTQ to get sndbuflen, the current length of the
send buffer; and getsockopt on level SOL TCP for
option TCP INFO to get tcpi, a variety of TCP state in-
formation. The TCP information used by KIST includes
the connection’s maximum segment size mss, the con-
gestion window cwnd, and the number of unacked pack-
ets for which the kernel is waiting for an acknowledg-
ment from the TCP peer. KIST then computes a write
limit for each connection c as follows:

socket spacec = sndbufcapc− sndbuflenc
tcp spacec = (cwndc−unackedc) ·mssc
limitc = min(socket spacec, tcp spacec)

(1)

The key insight in Equation 1 is that TCP will not al-
low the kernel to send more packets than dictated by the
congestion window, and that the unacknowledged pack-
ets prevent the congestion window from sliding open. By
respecting this write limit for each connection, KIST en-
sures that the data sent to the kernel is immediately send-
able and reduces kernel queuing delays.

If all connections are sending data in parallel, it is still
possible to overwhelm the kernel with more data than
it can physically send to the network. Therefore, KIST
also computes a global write limit at the beginning of
each GlobalWriteTimeout period:

sndbuflen prev = sndbuflen
sndbuflen = ∑ci

(
sndbuflenci

)
bytes sent = sndbuflen− sndbuflen prev
limit = max(limit,bytes sent)

(2)

Note that Equation 2 is an attempt to measure the actual
upstream bandwidth speed of the machine. In practice,
this could be done in a testing phase during which writes
are not limited, configured manually, or estimated using
other techniques such as packet trains [32].

The connection and global limits are computed at the
beginning of a scheduling round, i.e., on line 2 of Algo-
rithm 2; they are enforced whenever bytes are written to
the kernel, i.e., on lines 6 and 15 of Algorithm 2. Note
that they will be bounded above by Tor’s independently
configured connection and global application rate limits.

5.3 Experiments and Results

We use Shadow and its models as discussed in Section 3
to measure KIST’s effect on network performance, con-
gestion, and throughput. We also evaluate its CPU over-
head. See Appendix C [34] for an analysis under a more
heavily loaded Shadow-Tor network. Note that we found
that KIST performs as well or better under heavier load
than under normal load as presented in this section, indi-
cating that it can gracefully scale as Tor grows.
Prototype: We implemented a KIST protoype as a patch
to Tor version 0.2.3.25, and included the elements
discussed in Section 4 necessary for measuring conges-
tion during our experiments. We tested vanilla Tor us-
ing the default CircuitPriorityHalflife of 30,
the global scheduling part of KIST (without enforcing
the write limits), and the complete KIST algorithm. We
configured the global scheduler to use a 10 millisecond
GlobalWriteTimeout in both the global and KIST
experiments. Note that our KIST implementation ignores
the connection enumeration order on line 3 of Algo-
rithm 2, an optimization that may further improve Tor’s
control over priority in cases where the global limit is
reached before the algorithm reaches line 12.

10

works. We identified that most congestion occurs in
outbound kernel buffers, analyzed Tor socket manage-
ment, and designed a new socket transport mechanism
called KIST. Through evaluation in a full-scale private
Shadow-Tor network, we conclude that KIST is capa-
ble of moving congestion into Tor where it can be bet-
ter managed by application priority scheduling mecha-
nisms. More specifically, we found that by considering
all sockets and respecting TCP state information when
writing data to the kernel, KIST reduces both conges-
tion and latency while increasing utilization. Finally, we
performed a detailed evaluation of KIST against well-
known latency and throughput attacks. While KIST in-
creases the speed at which true network latency can be
calculated, it does not significantly affect the accuracy of
the probes required to correlate throughput.

Future work should extend our simulation-based eval-
uation and consider how KIST performs for relays in
the live Tor network. We note that our analysis is
based exclusively on Linux relays, as 91% of Tor’s band-
width is provided by relays running a Linux-based dis-
tribution [58]. Although we expect KIST to improve
performance similarly across platforms because it pri-
marily works by managing socket buffer levels, future
work should consider how KIST is affected by the inter-
operation of relays running on a diverse set of OSes. Fi-
nally, our KIST prototype would benefit from optimiza-
tions, particularly by running the process of gathering
kernel state information in a separate thread and/or us-
ing the netlink socket diag interface.

Acknowledgments

We thank our shepherd, Rachel Greenstadt, and the
anonymous reviewers for providing feedback that helped
improve this work. We thank Roger Dingledine for
discussions about measuring congestion in Tor, and
Patrick McHardy for suggesting the use of the netlink
socket diag interface. This work was partially supported
by ONR, DARPA, and the National Science Founda-
tion through grants CNS-1149832, CNS-1064986, CNS-
1204347, CNS-1223825, and CNS-1314637. This mate-
rial is based upon work supported by the Defense Ad-
vanced Research Project Agency (DARPA) and Space
and Naval Warfare Systems Center Pacific under Con-
tract No. N66001-11-C-4020. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of the Defense Advanced Research
Project Agency and Space and Naval Warfare Systems
Center Pacific.

References
[1] Alexa top 1 million sites. http://s3.amazonaws.com/

alexa-static/top-1m.csv.zip. Retrieved 2012-01-31.

[2] CAIDA data. http://www.caida.org/data.

[3] DETER testbed. http://www.isi.edu/deter.

[4] libevent event notification library. http://libevent.org/.

[5] libkqtime code repository. https://github.com/
robgjansen/libkqtime.git.

[6] libpcap portable C/C++ library for network traffic capture.
http://www.tcpdump.org/.

[7] Shadow homepage and code repositories. https://shadow.
github.io/, https://github.com/shadow/.

[8] Tor Metrics Portal. http://metrics.torproject.org/.

[9] TorPerf. https://gitweb.torproject.org/
torperf.git/.

[10] TorPS homepage. http://torps.github.io/.

[11] AKHOONDI, M., YU, C., AND MADHYASTHA, H. V. LAS-
Tor: A low-latency as-aware Tor client. In IEEE Symposium on
Security and Privacy (Oakland) (2012).

[12] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP Conges-
tion Control. RFC 5681 (Draft Standard), Sept. 2009.

[13] ALSABAH, M., BAUER, K., ELAHI, T., AND GOLDBERG, I.
The path less travelled: Overcoming Tor’s bottlenecks with traffic
splitting. In Privacy Enhancing Technologies Symposium (PETS)
(2013).

[14] ALSABAH, M., BAUER, K., AND GOLDBERG, I. Enhancing
Tor’s performance using real-time traffic classification. In ACM
Conference on Computer and Communications Security (CCS)
(2012).

[15] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUNWALD, D.,
MCCOY, D., SAVAGE, S., AND VOELKER, G. DefenestraTor:
Throwing out windows in Tor. In Privacy Enhancing Technolo-
gies Symposium (PETS) (2011).

[16] ALSABAH, M., AND GOLDBERG, I. PCTCP: Per-circuit tcp-
over-ipsec transport for anonymous communication overlay net-
works. In ACM Conference on Computer and Communications
Security (CCS) (2013).

[17] BACK, A., MÖLLER, U., AND STIGLIC, A. Traffic analysis
attacks and trade-offs in anonymity providing systems. In Work-
shop on Information Hiding (IH) (2001).

[18] CHAABANE, A., MANILS, P., AND KAAFAR, M. Digging into
anonymous traffic: A deep analysis of the tor anonymizing net-
work. In IEEE Conference on Network and System Security (NSS)
(2010).

[19] CHAN-TIN, E., SHIN, J., AND YU, J. Revisiting circuit clogging
attacks on Tor. In IEEE Conference on Availability, Reliability
and Security (ARES) (2013).

[20] DINGLEDINE, R., AND MATHEWSON, N. Anonymity loves
company: Usability and the network effect. In Workshop on the
Economics of Information Security (WEIS) (2006).

[21] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In USENIX Security Sympo-
sium (USENIX) (2004).

[22] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. De-
ploying low-latency anonymity: Design challenges and social
factors. IEEE Security & Privacy 5, 5 (Sept./Oct. 2007), 83–87.

[23] DINGLEDINE, R., AND MURDOCH, S. J. Performance improve-
ments on Tor or, why Tor is slow and what we’re going to do
about it. Tech. Rep. 2009-11-001, The Tor Project, 2009.

[24] EVANS, N. S., DINGLEDINE, R., AND GROTHOFF, C. A prac-
tical congestion attack on Tor using long paths. In USENIX Se-
curity Symposium (USENIX) (2009).

15

[25] GEDDES, J., JANSEN, R., AND HOPPER, N. How low can you
go: Balancing performance with anonymity in Tor. In Privacy
Enhancing Technologies Symposium (PETS) (2013).

[26] GOPAL, D., AND HENINGER, N. Torchestra: Reducing interac-
tive traffic delays over Tor. In ACM Workshop on Privacy in the
Electronic Society (WPES) (2012).

[27] HA, S., RHEE, I., AND XU, L. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Re-
view 42, 5 (2008), 64–74.

[28] HAHN, S., AND LOESING, K. Privacy-preserving ways to esti-
mate the number of Tor users. Tech. Rep. 2010-11-001, The Tor
Project, 2010.

[29] HOPPER, N. Protecting Tor from botnet abuse in the long term.
Tech. Rep. 2013-11-001, The Tor Project, 2013.

[30] HOPPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E. How
much anonymity does network latency leak? In ACM Confer-
ence on Computer and Communications Security (CCS) (2007).
Expanded and revised version in [31].

[31] HOPPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E. How
much anonymity does network latency leak? ACM Transactions
on Information and System Security (TISSEC) 13, 2 (Feb. 2010),
13–28.

[32] JAIN, R., AND ROUTHIER, S. Packet trains–measurements and
a new model for computer network traffic. IEEE Selected Areas
in Communications 4, 6 (1986), 986–995.

[33] JANSEN, R., BAUER, K., HOPPER, N., AND DINGLEDINE, R.
Methodically modeling the Tor network. In USENIX Workshop
on Cyber Security Experimentation and Test (CSET) (2012).

[34] JANSEN, R., GEDDES, J., WACEK, C., SHERR, M., AND
SYVERSON, P. Appendices to accompany “Never been
KIST: Tor’s congestion management blossoms with kernel-
informed socket transport”. Tech. Rep. 14-012, Univ.
of Minnesota, 2014. http://www.cs.umn.edu/tech_
reports_upload/tr2014/14-012.pdf.

[35] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a box
for accurate and efficient experimentation. In USENIX Security
Symposium (USENIX) (2012).

[36] JANSEN, R., HOPPER, N., AND KIM, Y. Recruiting new Tor re-
lays with BRAIDS. In ACM Conference on Computer and Com-
munications Security (CCS) (2010).

[37] JANSEN, R., JOHNSON, A., AND SYVERSON, P. LIRA:
Lightweight incentivized routing for anonymity. In Network and
Distributed System Security Symposium (NDSS) (2013).

[38] JANSEN, R., SYVERSON, P., AND HOPPER, N. Throttling Tor
bandwidth parasites. In USENIX Security Symposium (USENIX)
(2012).

[39] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. Users get routed: Traffic correlation on tor by
realistic adversaries. In ACM Conference on Computer and Com-
munications Security (CCS) (2013).

[40] MATHEWSON, N. Evaluating SCTP for Tor. http:
//archives.seul.org/or/dev/Sep-2004/
msg00002.html, Sept. 2004. Listserv posting.

[41] MATHIS, M., AND MAHDAVI, J. Forward acknowledgement:
Refining TCP congestion control. ACM SIGCOMM Computer
Communication Review 26, 4 (1996), 281–291.

[42] MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW, A.
TCP Selective Acknowledgment Options. RFC 2018 (Proposed
Standard), Oct. 1996.

[43] MCCOY, D., BAUER, K., GRUNWALD, D., KOHNO, T., AND
SICKER, D. Shining light in dark places: Understanding the Tor
network. In Privacy Enhancing Technologies Symposium (PETS)
(2008).

[44] MITTAL, P., KHURSHID, A., JUEN, J., CAESAR, M., AND
BORISOV, N. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In ACM Confer-
ence on Computer and Communications Security (CCS) (2011).

[45] MOORE, W. B., WACEK, C., AND SHERR, M. Exploring the po-
tential benefits of expanded rate limiting in Tor: Slow and steady
wins the race with Tortoise. In Annual Computer Security Appli-
cations Conference (ACSAC) (2011).

[46] MURDOCH, S. J. Hot or not: Revealing hidden services by their
clock skew. In ACM Conference on Computer and Communica-
tions Security (CCS) (2006).

[47] MURDOCH, S. J. Comparison of Tor datagram designs. Tech.
Rep. 2011-11-001, The Tor Project, 2011.

[48] MURDOCH, S. J., AND DANEZIS, G. Low-cost traffic analysis
of Tor. In IEEE Symposium on Security and Privacy (Oakland)
(2005).

[49] NOWLAN, M. F., TIWARI, N., IYENGAR, J., AMIN, S. O., AND
FORD, B. Fitting square pegs through round pipes. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2012).

[50] NOWLAN, M. F., WOLINSKY, D., AND FORD, B. Reducing la-
tency in Tor circuits with unordered delivery. In USENIX Work-
shop on Free and Open Communications on the Internet (FOCI)
(2013).

[51] The ns2 Network Simulator. http://www.isi.edu/
nsnam/ns/.

[52] PAXSON, V., ALLMAN, M., CHU, J., AND SARGENT, M. Com-
puting TCP’s Retransmission Timer. RFC 6298 (Proposed Stan-
dard), June 2011.

[53] RAMACHANDRAN, S. Web metrics: Size and number of re-
sources. https://developers.google.com/speed/
articles/web-metrics, 2010.

[54] REARDON, J., AND GOLDBERG, I. Improving Tor using a TCP-
over-DTLS tunnel. In USENIX Security Symposium (USENIX)
(2009).

[55] SHERR, M., MAO, A., MARCZAK, W. R., ZHOU, W., LOO,
B. T., AND BLAZE, M. A3: An Extensible Platform for
Application-Aware Anonymity. In Network and Distributed Sys-
tem Security Symposium (NDSS) (2010).

[56] SNADER, R., AND BORISOV, N. A tune-up for Tor: Improving
security and performance in the Tor network. In Network and
Distributed System Security Symposium (NDSS) (2008).

[57] TANG, C., AND GOLDBERG, I. An improved algorithm for Tor
circuit scheduling. In ACM Conference on Computer and Com-
munications Security (CCS) (2010).

[58] Tor network status. http://torstatus.blutmagie.de/
index.php.

[59] WACEK, C., TAN, H., BAUER, K., AND SHERR, M. An em-
pirical evaluation of relay selection in Tor. In Network and Dis-
tributed System Security Symposium (NDSS) (2013).

[60] WANG, T., BAUER, K., FORERO, C., AND GOLDBERG, I.
Congestion-aware path selection for Tor. In Financial Cryptog-
raphy and Data Security (FC) (2012).

[61] WEIGLE, E., AND FENG, W.-C. A comparison of TCP auto-
matic tuning techniques for distributed computing. In IEEE Sym-
posium on High Performance Distributed Computing (HPDC)
(2002).

16

